Фотосинтез

жарықта көмірқышқыл газы мен судан органикалық заттардың түзілу процесі

Фотосинтез (көне грекше: φῶς — "жарық" және σύνθεσις — "синтез") - жасыл жапырақ органоидтері, яғни хлоропласт арқылы күн сәулесі энергиясының химиялық байланыс энергиясына айналу процесі. Фотосинтез нәтижесінде жер жүзіндегі өсімдіктер жыл сайын 100 миллиард тоннадан астам органикалық заттар түзеді (мұның жартысынан көбін теңіз, мұхит өсімдіктері түзеді) және бұл кезде олар 200 миллиардқа жуық СО2 сіңіріп, оттегі бөледі.

жасыл жапырақ

Фотосинтезді алғаш зерттеушілер Швейцария ғалымдары Ж.Сенебье, Н.Соссюр және неміс химигі Ю.Майер болды. XIX ғасырдың 2-жартысында К.А.Тимирязев күн сәулесі энергиясы фотосинтез процесінде хлорофилл арқылы сіңірілетінін анықтады. XX ғасырдың басында фотосинтездің физиологиясы мен экологиясына арналған маңызды зерттеулер жүргізіледі (В.В.Сапожников, С.П.Костычев, В.Н.Любименко, А.А.Ничипорович т.б.). XX ғасырдың орта кезінен бастап фотосинтезді зерттеудің жаңа әдістері (газ анализі, радиоизотопты әдіс спектроскопия. Электрондық микроскоп т.б.) дамыды.

Жоғары сатыдағы жасыл өсімдіктер, балдырлар (көп жасушалы жасыл, қоңыр, қызыл, сондай-ақ бір жасушалы эвглена, динофлагеллят, диатом балдырлар) фотосинтезінде сутек доноры және шығарылатын оттек көзі – су, ал сутек атомның негізгі акцепторы және көміртек көзі – көмірқышқыл газ. Фотосинтезде тек СО2 мен Н2О пайдаланылса, көмірсу түзіледі. Фотосинтез процесіне өсімдік көмірсу түзумен қатар құрамында азоты және күкірті бар аминқышқылдарын, белок, молекуласы құрамында азот болатын хлорофилл де түзеді. Бұл жағдайда көмірқышқыл газбен қатар сутек атомының акцепторы және азот, күкірт көзі нитрат және сульфат болады. Фотосинтездеуші бактериялар молекула оттекті пайдаланбайды, оны бөліп шығармайды (бұлардың көбі анаэробтар). Бұл бактериялар су орнына донор ретінде электрондарды немесе органикалық емес қосылыстарды (күкіртті сутек, тиосульфат, газ тәрізді сутекті) немесе органикалық заттарды (сүт қышқылы, изопропил спиртін) пайдаланады.

Хлоропласттар

Фотосинтез аппаратының негізі – жасуша ішіндегі органелла-хлоропластар (көк жапырақ жасушасында 20-100 болады). Балдырлардың көпшілігінде фотосинтездік аппарат – жасуша ішіндегі арнайы органелла-хроматофорлар, ал фотосинтездеуші бактериялар мен көк-жасыл балдырларда тилакоидтер. Өсімдік фотосинтез процесінің негізі – тотығу-тотықсыздану. Мұнда квант энергиясы әсерінен 4 электрон мен протон су дәрежесінен (оның тотығуы) углевод дәрежесіне дейін көтеріледі. (СО2-ның тотықсыздануы). Сөйтіп көмірсулар фотосинтезі былай өтеді: СО22О С(Н2О)+О2+120 ккал/моль, яғни СО2-ның бір молекуласының углевод дәрежесіне дейін тотықсыздануының бос энергиясы 120 ккал/моль болады. Демек, өсімдік фотосинтезі кезінде кем дегенде 3 квант («қызыл» кванттар энергиясы 40 ккал/моль) сіңірілуі қажет. Әр түрлі жағдайда жасалған тәжірибе СО2-ның әр молекуласының тотықсыздануына 8–10 квант қажет екенін көрсетті. Көмірқышқыл газ да, су да жарықты тікелей сіңірмейді. Бұл қосылыстардың квантпен байланысқа түсуін хлоропласт не хроматофор структурасындағы хлорофилл қамтамасыз етеді. Фотосинтездің биосферадағы маңызы да үлкен. Мысалы, жер жүзіндегі көміртек, сутек, оттек, сондай-ақ N, S, P, Mg, Ca т.б. элементтер айналымы процесіне қатысы бар. Жер қалыптасқаннан бері фотосинтез нәтижесінде маңызды элементтер мен заттар бірнеше мың рет толық цикл айналымынан өткен. Өсімдік өнімін арттырудың бір жолы - өсімдіктің фотосинтездік әрекетін үдету. Бұл үшін жапырақ көлемін үлкейту, жапырақ тіршілігін ұзарту, егістіктегі өсімдік жиілігін реттеу керек. СО2, ауа, су, топырақтағы қоректік элементтер жеткілікті болуы қажет. Фотосинтез аппаратының активтілігі жапырақтың анатомиялық құрылысына, фермент жүйесі активтілігіне, көміртек метаболизмі типіне байланысты болады. Өсімдік селекциясының, яғни СО2 ассимиляциясы тез жүретін өсімдік сорттарын шығарудың да үлкен маңызы бар.

Автотрофты және гетеротрофты жасушылар

өңдеу

Пластикалық (анобализм) алмасу сипатына сәйкес табиғаттағы барлық жасушалар екі топқа бөлінеді. Хлорофилі бар өсімдік жасушаларының тірі табиғат үшін маңызы өте зор, себебі онда өзіне тән ерекше әрекеттер (процестер) жүріп жатады. Ол әрекеттер фотосинтез деген атпен ғылымға әйгілі. Фотосинтез дегеніміз күн сәулесі энергиясын химиялық байланыстар энергиясына айналдыратын күрделі механизмді әрекет.

Тыныс алу және фотосинтез

өңдеу

Ағзалар тыныс алғанда қоректік заттар толық ыдырауы үшін оттегі қажет. Тыныс алудың ең соңғы өнімдері – көміртегі оксиді, су және бос энергия. Бұл соңғы өнімдер — фотосинтезге қажеттi негiзгi қосылыстар. Сондықтан, тыныс алу фотосинтез кезiндегi энергияны жоққа шығарады. Алайда, тыныс алу кезiнде жұмсалған пайдалы энергия фотосинтез кезiндегi алынған күн энергиясынан аз болатындығын төменгi тiзбектен көруге болады.

Энергияның ең көбi — күн сәулесiнiкi, қоректiк заттар одан аз, ең азы көмiртек оксидi, су жене оттегi. Фотосинтез – көпсатылы күрделi әрекет. Мұнда күн сәулесi энергиясын химиялық байланыс энергиясына айналдыруда басты рөлдi хлоропласттар атқарады. Пластиттердiң үш түрге бөлінетіндігi белгiлi, олар: лейкопластар, хромопласт жене хлоропласт. Бұл үшеуiнiң де негiзi — строма деп аталатын ақуыз. Ал, фотосинтез әрекетi хлорофилл пигментi (жасыл түс беретiн) бар хлоропласт жасушасында жүредi.

Хлоропластың құрылысы

өңдеу

Биологиядағы барлық органоидтар сияқты, хлоропластың құрамы оның қызметiне сай күрделi болады. Хлорофиллдер көк және қызыл түсті сәулелерді жұтып, жасылды шағылыстырады. Ол сәуле хлоропласт жасушасын жасыл етіп көрсетеді.

Хлоропластарда хлорофиллдерден басқа сары, қоңыр, кызғылт сары түстi каротиноидтар болады. Ол пигменттер ұзындығы басқа толқындағы сәулелердi шағылыстырып, өз энергиясын хлорофиллдерге берiп, фотосинтездiң жүрiсiн тездетедi. Каротиноидтар жасыл хлорофиллдермен бүркенiп, көрiнбейдi, бiрақ күзде, хлорофиллдер бұзылғаннан кейiн, оның жарқыраған түсi көрiнедi. Сондықтан да күзде жапырақтардың түсi сары жене қызғылт көрiнiс бередi. Хлоропластағы хлорофилл пигментi граналарда орналасқан. Граналар бiрiнiң үстiне бiрiн жинап қойған күмiс ақша сияқты тақташалардан тұрады. Тақташалар өзара шұрықтармен байланысады да, ал фотосинтез әрекетi бүкiл хлоропласт жасушасында емес осы граналарда жүредi.

Кейбiр фотосинтезге қатысатын молекулалар мен пигменттер хлоропластағы фотосинтетикалық кабықшаны құрастыруға қатысады. Фотосинтетикалық қабықшалардың строма немесе хлоропластың негiзгi заты қоршайды. Строманың өзi хлоропласт жене жасушаның цитоплазмасын бөлетiн қабықшадан тұрады. Фотосинтез әрекетi кезінде, АДФ-тiң ағзаларда атқаратын рөлi зор. АДФ — ағзалар деп отырғанымыз АТФ синтезiне Н — қоймасындағы энергияны пайдаланатын ферменттер.

Аденозинтрифосфат (АТФ)

өңдеу

Жасушаның қимылдауына, ондағы жаңа ақуыз молекулаларының синтезделуi мен тасымалдануына, артық заттардың шығарылуына, яғни зат айналысының үздiксiз жүрiп тұруына осы АТФ-тiң энергиясы жұмсалады. Күн энергиясының АТФ түрiнде сакталған химиялық энергияга айналуы фотосинтездегi қоректiк заттардың калыптасуындағы маңызды кезең. АТФ тiрi ағзалардың өмiр сүруiндегi энергияның орталығы болады.

Фотосинтез кезiнде өсiмдiктер күн энергиясын органикалық заттардың молекулаларында сақтайды, ал тыныс алғанда қоректiк заттардың молекуласы ыдырап, ондағы энергия босап шығады. Яғни осы құбылыс АТФ-тiң синтезiне энергия екелетiнi жоғарыда көрсетiлген. АТФ молекуласьиның құрамында жоғары энергетикалы екi фосфат тобы болады. Бұл екi байланыс үзiлгенде басқа кез келген коваленттi байланыспен салыстырғанда көп энергия болiнедi. АТФ молекуласындағы фосфат тобының шеткi бiр молекуласы үзiлгенде 40 кДж энергия болiнедi, бұл энергияны жасуша пайдаланады. Осы кезде АДФ (аденозиндифосфат және босаған бейорганикалық фосфат қыскаша Фн деп жазылады) пайда болады. Қайтадан АТФ пайда болу үшiн АДФ пен фосфат тобы қосылу керек. Оған көп энергия жұмсалады, ол энергия фосфат тобының ыдырауынан және тыныс алудан алынады.[1]

Сонымен АТФ-тiң пайда болуьиның бiр жолы — ол АДФ-нiн басқа молекулалардан фосфат қосып алуы аркылы жүредi екен. Гликолиз әрекетi кезiнде көптеген АТФ молекуласы түзiледi, мұнымен катар АТФ-тiң негiзгi бөлiгi химио-осмос барысы кезiнде пайда болады. АТФ молекуласының синтезделуінің осы жолын алпысыншы жылдары химио-осмос әрекетi деп атаган. Химио-осмос хлоропластарда фотосинтез ксзiнде және митохондрияларда жасуша тыныс алгғанда жүредi. Ол екi кезеңнен тұрады.

  1. Энергияның жиналуы.
  2. Жиналған энергияны АТФ синтезiне пайдалану. Химио-осмос кезінде пайдаланылатын энергия — ол электрлiк заряды бар бөлшектер - иондардың қатысуына байланысты болатын электрхимиялык энергия қарсы зарядталған бөлшектер бiрiн-бiрi тартады. Егер осы белшектердiң қосылуына кедергi жасалса, электрхимияльиқ энергия жиналады:

Иондардың арасындағы кедергілерді ашса, электрохимиялық энергия жұмыс істейді.

Хемиосмос жоғарыда көрсетілген сызбанұсқаның негізінде жүреді. Хлоропластар мен митохондрияларда кедергінің рөлін органоидтар ішіндегі жарғақшалар атқарады.[2][3]

Тіндік деңгейдегі фотосинтез

өңдеу

Тіндік деңгейде жоғары сатыдағы өсімдіктердегі фотосинтез мамандандырылған ұлпамен – хлоренхимамен қамтамасыз етіледі. Ол өсімдік денесінің бетіне жақын орналасқан, онда ол жеткілікті жарық энергиясын алады. Әдетте хлоренхима тікелей эпидермис астында болады. Жоғары инсоляция жағдайында өсетін өсімдіктерде эпидермис пен хлоренхима арасында жарықтың таралуын қамтамасыз ететін мөлдір жасушалардың бір немесе екі қабаты (гиподерма) орналасуы мүмкін. Кейбір көлеңке сүйгіш өсімдіктерде эпидерма да хлоропластарға бай (мысалы, саумалдық). Көбінесе жапырақтың мезофилл паренхимасы палисадты (бағаналы) және борпылдақ болып бөлінеді, бірақ ол біртекті жасушалардан тұруы мүмкін. Дифференциация жағдайында бағаналы хлоренхимасы хлоропластарға ең бай.

Дереккөздер

өңдеу
  1. Биология: Жалпы білім беретін мектептің, 9-сыныбына арналған оқулық, 2-басылымы, өңделген/ М. Гильманов, А. Соловьева, Л. Әбшенова. - Алматы: Атамұра, 2009. ISBN 9965-34-927-4
  2. О.Д.Дайырбеков, Б.Е.Алтынбеков, Б.К.Торғауытов, У.И.Кенесариев, Т.С.Хайдарова Аурудың алдын алу және сақтандыру бойынша орысша-қазақша терминологиялық сөздік. Шымкент. “Ғасыр-Ш”, 2005 жыл. ISBN 9965-752-06-0
  3. "Қазақ Энциклопедиясы", 9 том