相対性理論
この記事はドイツ語版の対応するページを翻訳することにより充実させることができます。(2021年7月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2021年7月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
概要
編集相対的に等速直線運動する2つの観測者(慣性系である座標系)の間において、物理法則は互いに不変とする相対性原理と光速度が観測者の速度の影響を受けず一定であるという2つの仮説・原理をもとに、絶対静止系のような定常的な計量に触れずに根本的物理法則を説明する試みがあり、1905年に論文発表された。今日「特殊相対性理論」と呼ばれているこの理論では、特に、光速に準じた高速移動をする観測者間の時間と空間の関係に対して、従来のニュートン力学よりも正確な理解が著され、ニュートン力学に見られた実験事実との齟齬を発展的に克服した。また、特殊相対性理論は、電磁気学における座標変換(ローレンツ変換)に関する理解を前進させ、電磁気学の理論体系をより発展させた。
特殊相対性理論に続いて、1915 - 1916年に一般相対性理論が発表された。一般相対性理論では、等価原理すなわち「速度の変動によって生じる重力と質量のもたらす重力とは区別がない」という仮説・原理から、非慣性系を含めたあらゆる座標系における力学現象の理解を進めた。具体的には、重力を座標系の計量として理解することで、特に、宇宙や巨大天体の構造と力学的挙動についての新たな理解をもたらした。
重力以外の他の力(電磁気力、強い相互作用、弱い相互作用)は、相対性理論の体系に付加的・補足的に組み込むことは可能であるが、相対性理論の根本的量子化を含めて、これら他の力との統合的・統一的理解は、なお現代物理学の課題となっている。
歴史
編集1905年、アルベルト・アインシュタインにより一つの論文(アインシュタインの原論文の一つ)が発表された。1906年の発表[2]において、マックス・プランクは相対論(ドイツ語: Relativtheorie)という表現を用い、 このセッションにおける議論の中でアルフレート・ブヘラが初めて相対性理論(ドイツ語: Relativitätstheorie)という表現を用いた。
特殊相対性理論の発表後、アインシュタインは対象を慣性系に限らずに適用できる理論の構築に取り組み、重力場について考察した一般相対性理論へと発展させた。1916年の論文で、重力場の基礎方程式であるアインシュタイン方程式の最初の定式化がなされた。1917年のアインシュタインの論文では、定常宇宙の前提のもとで宇宙定数が追加された。後にエドウィン・ハッブルらの観測により宇宙が膨張していることが明らかとなり、これに関わる宇宙定数の議論・理解も進められた。
特殊相対性理論
編集この節の加筆が望まれています。 |
特殊相対性理論は、2つ(以上)の等速直線運動をする慣性系群について、両者に互いに区別はなく、対等・等価な存在であることを原理とした力学理論である。ここでは、光速度は物理定数として、あらゆる観測者(慣性系)からの観測に対して不変の定数である。また、宇宙の何処にも絶対的な距離や時間の普遍の尺度が存在せず(絶対空間、絶対時間の否定)、物理現象はただ観測者に固有の時刻・座標に基づいてのみ理解されるものであり、その観測者はすべてが等価である(相対的である)ことが示されている。
一般相対性理論
編集この節の加筆が望まれています。 |
特殊相対性理論では慣性系のみを原則として扱う。一方で、一般相対性理論では、「観測者が感じる力」とは「座標系の加速運動」と等価であるとの原理を出発点として、力学現象を座標系の計量(時空間の歪み)として捉え、これを定式化している。この試みはアインシュタイン方程式として大成し、特に重力と物質の分布・運動に対する統一的な理論となった。
反「相対性理論」
編集相対性理論は、その意味することが正しく理解されたかということを別論として、物理学を始めとする自然科学の分野のみならず、社会的現象としても広く受け入れられた。
その反面として、その結論に同意できない立場などが、科学的反論ではなく、反-相対性理論とでも言うべき一種の社会的運動となった。特に、これはアインシュタインがユダヤ系であり平和主義者であるということが、国家主義者に嫌悪され、第一次世界大戦でドイツが敗戦した後には、パウル・ヴァイラントによる、反相対性理論キャンペーンが張られたりもした[3]。
物理学者の世界においても、ユダヤ的であるという理由でアインシュタインの業績を認めない、フィリップ・レーナルトやヨハネス・シュタルクらの「ドイツ物理学」の一派があった。彼らは、相対性理論の結果は認めるがそれをアインシュタインの成果としないという立場のゆえに、「E=mc²の発見はフリードリヒ・ハーゼノールに帰せられる」などの主張を行い、アインシュタインを「ユダヤ物理学」として攻撃した[4] 。
1921年にアインシュタインはノーベル物理学賞を受賞したが、これは光電効果の発見を理由としており、相対性理論を対象としての授与ではなかった。この理由の一つとして、ノーベル物理学賞は、それによって人類が非常に大きな利用価値を得るような物理学の最近の発見に対して与えられるべきものとされるが、相対性理論は当初、新しい現象を主張するものではなく、それまでに知られていた多くの現象を統一的に、より簡単に理解する一つの原理を与えるものであり、これが「発見」と言えるか、また、利用価値があるものかは未知であった[注釈 1]。もう一つの理由として、相対��理論は、純粋物理学の理論であるにもかかわらず、すでに政治的論争の対象になっており、もしスウェーデン科学アカデミーが、相対性理論に対してノーベル物理学賞を与えるとなれば、同アカデミーも、その論争に巻き込まれる危険があったためとされる[5]。
ドイツ物理学の一派は、ナチス政権が成立するとそれに同調したが、政権崩壊とともに勢力を失った。
実用
編集光速に比べて「十分に遅い」運動現象を日常とする人類にとって、絶対時間の否定等の相対性理論の世界観は、直観として受け入れ難いものではある。しかしながら、多くの実験事実は相対性理論の思想あるいは帰結によく整合し、現代物理学の核心的体系の一つとなっている。このような、特殊相対性理論および一般相対性理論の成果とするところは、広く技術的な応用に取り入れられている[注釈 2]。
GPS
編集GPSは原子時計を使用しているが、人工衛星に搭載された時計は重力による時空の歪みによって地上との時間の流れにわずかな差が生じる。それを補正するために一般相対性理論が使用されている[6][7][8]。
脚注
編集注釈
編集出典
編集- ^ 『相対性理論とは コトバンク』 - コトバンク
- ^ Planck, Max (1906). “Die Kaufmannschen Messungen der Ablenkbarkeit der β-Strahlen in ihrer Bedeutung für die Dynamik der Elektronen”. Physikalische Zeitschrift 7: 753–761.
- ^ 矢野p.148
- ^ 矢野p.149-p.151
- ^ 矢野p.177-p.179
- ^ “【半導体】カーナビはアインシュタインのおかげ!!”. 2021年6月17日閲覧。
- ^ “GPSと物理”. 2021年6月17日閲覧。
- ^ “身近に潜む相対論”. 2021年6月17日閲覧。