投影 (図学)
図学における投影(とうえい、英: projection)は3次元立体を2次元平面へ写すことである[1][2]。投象(とうしょう)とも。
概要
編集物体は3次元空間に立体として存在する。ヒトは3次元空間から放射される光を目の網膜曲面(2次元面)で受け止めそこから空間の構造を推察できる。また写実絵画やカメラでは空間を平面へ写し取りこれを鑑賞する。工業では製品を加工するために立体をある側面から見た図が必要になる。これらでは共通して「3次元立体を2次元平面へ写す」ことがおこなわれており、これを投影という[1]。写真や図面は投影図といえる。
投影では各点からの投影線と投影面の交点を取って投影図を得る(#仕組み)。投影図法により得られる投影図の特性が異なるため、目的に応じた様々な投影が存在する(#分類)。
仕組み
編集投影では、3次元空間内の1点から投影線を伸ばしこれが投影面と交差した箇所をこの点の投影先とする。これを空間内すべての点に対しておこなうことで投影図を得る。
投影線
編集投影線(とうえいせん、英: projection line, 英: projector)は3次元空間中の点を投影する線である[3]。投射線(とうしゃせん)とも。
投影線は物体のある点から放射された光の軌跡に例えられる。この光を平面(=投影面)で受け止めれば空間を平面へ写し取れる。
投影線にどのような幾何的制約を与えるかで投影図が大きく変化する。投影線が1点へ収束する制約を与えれば遠近感が発生し(透視投影)、投影線が互いに平行である制約を与えれば奥行きに依らず長さが保存される(平行投影)。
投影面
編集分類
編集投影は様々な観点から分類できる。
一例として、写し方に応じて以下のように分類できる(括弧内は別名):
-
等軸測投影
-
二等角投影
平行投影
編集平行投影(へいこうとうえい、英: Parallel projection)は投影線が互いに平行な投影である[5]。
視点が無限遠に存在すると仮定すると投影線は互いに平行になる。つまり無限遠視点の透視投影と平行投影は等価である(図参照)。
平行投影は投影線と投影面の直交有無によって直投影と斜投影に二分される[6]。直投影は更に主投影、直軸測投影、標高投影に分類される。また平行投影のうち対象の直交座標軸が単一投影面上に傾いて写されるものはアクソノメトリーと呼ばれる。
-
直投影
-
斜投影
-
主投影
-
直軸測投影
-
標高投影(地形図)
斜投影
編集斜投影は投影面と直交する面を投影図へ写せる特性をもつ。そのため投影面と平行な対象の面を実形に保ちつつその側面も同じ投影図内に写せる[9]。これは直投影で同様の投影をおこなうと正対する面しか像に反映されないことと対照的である。
対象の直交座標軸が単一投影面上に傾いて写される斜投影、つまりアクソノメトリックな斜投影は
カバリエ投影
編集投影では対象を3次元の直交座標系に置きこの空間を2次元の投影面へ写す。斜投影において座標軸がつくる平面(x-y 座標面、y-z 座標面、z-x 座標面)のいずれかが投影面と平行なとき、これをカバリエ投影という[12][13]。慣例的には直交座標系の軸に沿わせる形で対象を配置するため、カバリエ投影は「対象の主たる面が投影面と平行になるよう対象を配置した斜投影」とも言える[12]。
カバリエ投影は平行投影の一種でありかつ対象の主たる面を投影面と平行にするため、カバリエ投影は対象の主たる面が実形を保つという特性をもつ[9]。
またカバリエ投影は斜投影の一種でありかつ対象の主たる面を投影面と平行にするため、カバリエ投影は対象の正面と側面を同時に投影図へ反映しやすい特性をもつ[9]。このため複面投影する必要性が薄く、カバリエ投影は基本的に単一の投影面のみを用いる(= 基本的に斜軸測投影である)。分野によってはアクソノメトリックであることを要件に入れてカバリエ投影(英: cavalier axonometry)を定義付けている[13][14]。
分野によっては慣例的に「第三の軸も投影図上で実長を保つ」という制約をカバリエ投影に課す場合がある(カバリエ図とも)[15][16]。この場合必然的に投影線の傾きが45°に制約される[16][注 2]。
キャビネット投影
編集cavalier axonometry と同じく、分野によってはアクソノメトリックであることを要件に入れてキャビネット投影(英: cabinet axonometry)を定義付けている[18][19]。
投影図
編集投影図(とうえいず、英: projection drawing, 英: projection view)は3次元立体を2次元平面へ写すことで得られる表現・図である[20][21]。
投影図の分類
編集投影図は対象と視点の位置関係から以下のように分類できる:
- 正面図(しょうめんず、英: front view): 対象の正面に視点が正対[22]。立面図(りつめんず、英: elevation)とも[23]。
- 上面図(じょうめんず、英: top view): 対象の上面に視点が正対[24]。平面図(へいめんず、英: plan)とも[25]。
- 側面図(そくめんず、英: side view): 対象の側面に視点が正対[26]
- 下面図(かめんず、英: bottom view): 対象の下面に視点が正対[27]
- 背面図(はいめんず、英: rear view): 対象の背面に視点が正対[28]
対象の見え方が最も明瞭になるよう自由に視点を決めた投影図を主投影図(しゅとうえいず、英: principal view)という[29]。
ウィンドウ
編集投影におけるウィンドウ(英: Window)は投影面のうち投影図として切り出される領域である[30][31]。窓(まど)とも。
写真や図面は投影面をウィンドウで切り出したものといえる。絵画における額縁やアニメのレイアウトにおけるメインフレームで囲まれた領域に相当する。コンピュータグラフィックスにおけるビューポートとも関係が深い[32]。ウィンドウが切り出した空間の広さを表現する指標のひとつに画角がある(透視投影で大きな意味をもつ)[33]。
投影図法
編集投影図法(とうえいずほう、英: projection drawing method)は3次元立体を2次元平面へ写す規則・手法・作図手順である[34]。投影法とも[35][1]。
投影図法は各投影に合わせて様々存在する。また、いくつかの図法に共通する作図のための概念が存在する。
脚注
編集注釈
編集- ^ JIS Z8114:1999 はこの oblique axonometry に「斜投影」の語を当て、かつ、oblique projection の定義にも単一投影面の要件を入れている(と読める記述になっている)。これは翻訳元の ISO 10209:2022 と同等でない/逸脱している可能性がある。
- ^ 初等幾何により容易に示せる: 投影面から垂線となる線分を伸ばして第三軸とし、軸・投影線・像からなる三角形を考える。軸は垂線であるためこの三角形は直角三角形であり、かつ実長維持の制約により軸と像が等長の二等辺三角形になるため、この三角形は必ず直角二等辺三角形になる。ゆえに投影面と軸の角度は常に45°になる ∎
出典
編集- ^ a b c "三次元の物体を平面上で表現するための図法(投影法)" 以下より引用。武蔵野美術大学. 透視投影. MAU 造形ファイル. 2024-07-18 閲覧.
- ^ "投影 projection" 日本図学会 2024 より引用。2024-07-18 閲覧.
- ^ "投影線 投影中心からの視点と対象物上の点とを通って表示される直線。投影平面でのその交点は,対象物のその点の投影を示す。 projection line" JIS Z8114:1999 より引用。
- ^ "投影面 対象物の画像を得るために,対象物が投影される平面。 projection plane" JIS Z8114:1999 より引用。
- ^ "平行投影 parallel projection 投影線が互いに平行な投影のこと. ... また,この方法によって描かれた図のこと." 日本図学会 2009, p. 143 より引用。
- ^ "平行投影 ... 投影線が投影面に垂直な場合を直投影,垂直でない場合を斜投影という." 日本図学会 2009, p. 143 より引用。
- ^ "斜投影(シャトウエイ) oblique projection ... 投影線が平行で,投影面に斜め方向にとった投影." 日本図学会 2009, p. 63 より引用。
- ^ "3.2.34 oblique projection parallel projection in which all projection lines intersect the projection plane at the same angle other than 90°" ISO 10209:2022 より引用。
- ^ a b c "斜投影 ... 対象の主要な面を投影面に平行におくと,その面の実形が投影図に表現され ... 直方体の一側面を投影面に平行においても,同時に他の二側面を示すことができ" 日本図学会 2009, p. 63 より引用。
- ^ "3.2.33 oblique axonometry oblique projection on a single projection plane" ISO 10209:2022 より引用。
- ^ "斜軸測投影 oblique axonometric projection; oblique axonometry" 日本図学会 2024 より引用。2024-10-07 閲覧.
- ^ a b c d "カバリエ投影[投象] cavalier projection 直交座標系のうち,垂直面となる二軸を投影面に平行にした場合の投影法をカバリエ投影という.カバリエ投影は垂直面(直立面)の形状の表示に主眼を置いている.... 直立斜投影 ... とも" 日本図学会 2009, p. 25 より引用。
- ^ a b c "3.2.7 ... cavalier axonometry oblique axonometry in which the projection plane is parallel to one of the coordinate planes" ISO 10209:2022 より引用。
- ^ "カバリエ投影 投影面が,座標面の一つと平行になるように,単一の投影面 (projection plane) 上に投影する方法。... cavalier axonometry" JIS Z8114:1999 より引用。
- ^ "カバリエ投影 ... 慣習上,第三の軸方向の投影も同じ尺度にする (monometric projection)。" JIS Z8114:1999 より引用。
- ^ a b "カバリエ図 ... 投影線が投影面に対し45°の傾きをもつ斜投影図. 三軸ともに実長を表す.〔JIS〕" 日本図学会 2009, p. 25 より引用。
- ^ a b "カビネ投影(図) cabinet projection カバリエ投影において主軸の傾角と比率を45°,比率を0.5としたときの投影図をいう.カビネ投象(図),キャビネ投影,キャビネット投影ともいう." 日本図学会 2009, p. 26 より引用。
- ^ "3.2.7 cabinet axonometry ... oblique axonometry in which the projection plane is parallel to one of the coordinate planes" ISO 10209:2022 より引用。
- ^ "キャビネット投影 投影面が,座標面の一つと平行になるように,単一の投影面上に斜投影する方法。... 慣習上,第三の軸方向の投影尺度を1/2にとる。 cabinet axonometry" JIS Z8114:1999 より引用。
- ^ "投影図 ... 投影法によって描いた図。... projection view" JIS Z8114:1999 より引用。
- ^ "投影図 projection; projection drawing" 日本図学会 2024 より引用。2024-07-18 閲覧.
- ^ "正面図 対象物の正面とした方向からの投影図 ... front view" JIS Z8114:1999 より引用。
- ^ "立面図 ... 鉛直面への投影図 ... elevation ... 正面図 ... 立面図ともいう"
- ^ "対象物の上面とした方向からの投影図 ... 上面図 (top view)" JIS Z8114:1999 より引用。
- ^ "平面図 ... 対象物の上面とした方向からの投影図又は水平断面図 ... plan" JIS Z8114:1999 より引用。
- ^ "側面図 ... 対象物の側面とした方向からの投影図 ... side view" JIS Z8114:1999 より引用。
- ^ "下面図 ... 対象物の下面とした方向からの投影図 ... bottom view" JIS Z8114:1999 より引用。
- ^ "背面図 ... 対象物の背面とした方向からの投影図 ... rear view" JIS Z8114:1999 より引用。
- ^ "主投影図 対象物の形・機能の特徴を最も明瞭に表すように選んだ投影図。 principal view" JIS Z8114:1999 より引用。
- ^ "ウィンドウ 投影面上の投影範囲" 藤堂 2015, p. 15 より引用。
- ^ "投影面にはウィンドゥが設定される.ウィンドゥはいわば投影面に開けられたのぞき窓である." 西田 2003, p. 334 より引用。
- ^ "ウィンドゥ内の2次元図形データは,表示装置固有のデバイス座標系 (とくにディスプレイ面の場合はスクリーン座標系ともいう)の指定した領域すなわちビユーポートに変換され表示される." 西田 2003, p. 335 より引用。
- ^ "画角(視野角) • ウィンドウ(投影範囲)の大きさを決める角度" 藤堂 2015, p. 15 より引用。
- ^ "投影図法 projection drawing method ... 投影法 projection [projecting] drawing method" 日本図学会 2024 より引用。2024-07-18 閲覧.
- ^ "投影法 三次元の対象物を二次元画像に変換するために用いる規則。... projection method" JIS Z8114:1999 より引用。
参考文献
編集- 日本図学会『図学用語辞典』森北出版、2009年。ISBN 978-4-627-08171-0。
- 西田 (2003). “チュートリアル コンピュータグラフィックスの数理(2)座標変換”. 応用数理 (社団法人日本物理学会) 13 (4): 334-342. CRID 1390001205765353472 .
- JIS Z8114:1999 製図-製図用語
- 藤堂 (2015年). “第5回CGのための数学的基礎2 -投影変換-”. 講義「コンピュータグラフィックス」. 明治大学. 2024年8月6日閲覧。
- 日本図学会. “図学辞書(簡易版)”. 2024年7月18日閲覧。