Vai al contenuto

Costante di Eulero-Mascheroni

Da Wikipedia, l'enciclopedia libera.

La costante di Eulero-Mascheroni è una costante matematica, usata principalmente nella teoria dei numeri e nell'analisi matematica. È definita come limite della differenza tra la serie armonica troncata e il logaritmo naturale:

dove è l'ennesimo numero armonico. La sua valutazione approssimata è:

0,57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...[1]
Costante di Eulero-Mascheroni
Simboloγ
Valore0,57721566490153286060...
(sequenza A001620 dell'OEIS)
Origine del nomeEulero e Lorenzo Mascheroni
Frazione continua[0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, ...]
(sequenza A002852 dell'OEIS)
Camponumeri reali (congetturato irrazionale)
Costanti correlateCostanti di Stieltjes, Costante di Meissel-Mertens

Non è noto se sia un numero razionale o meno. Tuttavia, se si suppone che sia razionale, l'analisi in frazioni continue dimostra che il suo denominatore ha più di 10242080 cifre.[2]

Le costanti di Stieltjes sono una generalizzazione di tale costante.

Rappresentazione integrale

[modifica | modifica wikitesto]

La costante può essere definita in più modi attraverso gli integrali:

dove le parentesi indicano la funzione parte intera;

Altri integrali collegati con sono:

Sviluppo in serie

[modifica | modifica wikitesto]

La costante di Eulero-Mascheroni si può esprimere tramite molte serie:

È notabile la serie trovata da Vacca nel 1910:

dove, nuovamente, le parentesi indicano la funzione parte intera. Essa si generalizza in

per ogni intero .

Collegamento con le funzioni speciali

[modifica | modifica wikitesto]

La Costante di Eulero-Mascheroni è collegata con molte funzioni speciali come la funzione zeta di Riemann, la funzione gamma e la funzione digamma.

Presenza in teoria dei numeri

[modifica | modifica wikitesto]

La costante di Eulero-Mascheroni compare spesso in teoria dei numeri, ad esempio collegata ai numeri primi

noto come terzo teorema di Mertens. Nel problema dei divisori di Dirichlet

Inoltre,

dove e sono rispettivamente il numero di 1 e di 0 nello sviluppo binario di (Sondow 2005).

  1. ^ Il record per il calcolo di γ è di 108 000 000 di decimali (Patrick Demichel e Xavier Gourdon, 1999). V. Histoire des maths
  2. ^ havil, p. 97.
  • Havil, J., Gamma: Exploring Euler's Constant, Princeton, NJ: Princeton University Press, 2003.

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]


Controllo di autoritàThesaurus BNCF 36653 · GND (DE4227778-4
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica