Inconel

alliage nickel-chrome

Inconel est une marque déposée de Special Metals Corporation (en) désignant différents alliages de métaux. La marque est utilisée comme préfixe pour environ 25 alliages, les plus couramment utilisés étant l'Inconel 600 (NiCr15Fe), l'Inconel 625 (NiCr22Mo9Nb), et l'Inconel 718 (NiCr19Fe19Nb5Mo3).

Cylindre d'Inconel 718.

Caractéristiques

modifier

Composition

modifier

Il est considéré par l'industrie métallurgique comme faisant partie de la gamme des superalliages.

Cependant, contrairement aux aciers inoxydables qui sont tous à base de fer (dominant en proportion) allié avec du nickel et du chrome, de nombreux Inconels sont à base de nickel (représentant généralement plus de la moitié en masse), allié avec du chrome et du fer, comme l'Inconel 625.

Ses métaux d'alliage secondaires sont principalement le molybdène, le niobium et le manganèse.

Exemple de composition de six alliages Inconel
Inconel Autres
dénominations
Élément (% massique)
Ni Cr Fe Mo Nb Co Mn Cu Al Ti Si C S P B
600[1] UNS N06600 72,0 min 14,0-17,0 6,0-10,0 1,0 max 0,50 max 0,50 max 0,15 max 0,015 max
690[2] UNS N06690 58,0 min 27,0-31,0 7,0-11,0 0,50 max 0,50 max 0,50 max 0,05 max 0,015 max
617[3] UNS N06617 44,5 min 20,0-24,0 3,0 max 8,0-10,0 10,0-15,0 1,0 max 0,50 max 0,8-1,5 0,6 max 1,0 max 0,05-0,15 0,015 max 0,006 max
625[4] ASTM A-494, ACI CW6MC, UNS N06625 58,0 min 20,0-23,0 5,0 max 8,0-10,0 3,15-4,15 1,0 max 0,50 max 0,40 max 0,40 max 0,50 max 0,10 max 0,015 max 0,015 max
718[5] UNS N07718 50,0-55,0 17,0-21,0 qsp 100 % 2,80-3,30 4,75-5,50 1,0 max 0,35 max 0,30 max 0,20-0,80 0,65-1,15 0,35 max 0,08 max 0,015 max 0,015 max 0,006 max
X-750[6] UNS N07750 70,00 min 14,0-17,0 5,0-9,0 0,70-1,20 1,00 max 1,00 max 0,50 max 0,40-1,00 2,25-2,75 0,50 max 0,08 max 0,01 max
  • Note : dans ce tableau, les zéros sont significatifs.

Mécaniques/physiques

modifier

Ses propriétés mécaniques à 20 °C et son apparence sont comparables à celles de l'acier inoxydable. À température ambiante, la contrainte à rupture peut varier de 690 à 1 500 mégapascals selon l'alliage et le traitement thermomécanique qu'il a reçu.

Utilisations industrielles

modifier

D'une manière générale, les Inconels présentent les mêmes avantages que les aciers inoxydables par rapport aux aciers au carbone, mais en plus marqués. Évidemment, ils sont aussi beaucoup plus chers, la décision de les utiliser est calculée sur la durée de vie prévue et la rentabilité de l'application. Ils sont ainsi utilisés dans les centrales nucléaires.

Les Inconels sont fréquemment utilisés dans l'aéronautique et plus particulièrement pour les pièces des parties chaudes des turboréacteurs.

Autres utilisations

modifier

L'Inconel est utilisé dans les sports mécaniques et plus particulièrement dans la fabrication de collecteurs d'échappement (Formule 1, WRC…) et parfois, de façon plus exceptionnelle, dans la fabrication de barbecues artisanaux grâce à sa supra-résistance thermique.

Corrosion

modifier

Ils sont extrêmement résistants à la corrosion (bien plus que les aciers inoxydables) et sont utilisés dans les applications (principalement industrielles) où des produits très corrosifs sont impliqués, par exemple les industries papetière ou nucléaire. Leur résistance à l'oxydation permet de les utiliser à des températures élevées (jusqu'à 600 °C à 700 °C en fonction de l'application).

Compte tenu de leur composition, principalement basée sur le nickel, ils résistent très mal en atmosphère réductrice et en particulier en présence de soufre (anhydre sulfureux, sulfure d'hydrogène).

Contrairement aux aciers au carbone qui peuvent difficilement être utilisés à des températures de plus de 400 °C, ou aux aciers inoxydables, qui dépassent difficilement 600 °C, certains Inconels peuvent être utilisés jusqu'à des températures de plus de 800 °C, ce qui explique leur utilisation pour l'avion-fusée américain North American X-15.

Ceci est dû aux éléments d'addition (principalement Mo, Cr et Cu), qui augmentent la température de fluage.

Les Inconels sont aussi utilisés dans des applications industrielles où de hautes températures sont en jeu, telles que dans les unités pétrolières, l'aéronautique, l'aérospatial ou le nucléaire[7].

Ductilité

modifier

Les Inconels ont une ductilité exceptionnelle, supérieure à celle des aciers inoxydables, leur permettant de descendre à des températures inférieures à −200 °C sans devenir fragiles. Ils sont utilisés dans des domaines où de très basses températures sont en jeu (recherche, distillation de certains composants de l'air, etc.).

Équivalents

modifier

Les alliages de type Inconel sont comparables aux Hastelloys, seule la marque changeant.

Usinage

modifier

On tourne généralement, en fraisage, entre 20 et 40 m/min, avec des avances et profondeur de passe réduites.

L'utilisation de plaquettes céramique est vivement conseillée pour assurer un résultat satisfaisant en fraisage.

En perçage, les solutions industrielles sont quasi inexistantes (hormis l’usinage par électro-érosion). Seules quelques entreprises arrivent tout de même à usiner l'Inconel.

Fabrication additive

modifier

L'inconel existe aussi sous forme de poudre et de fil, qui sont largement utilisés par impression 3D industrielle, avec par exemple les procédés de fusion par laser (DMLS) ou de fusion par faisceau d'électrons (EBAM) [1]. Du fait de ses propriétés mécaniques et thermiques, l'impression 3D en inconel 625 ou 718 est préférée dans les secteurs de l'aéronautique et du spatial pour fabriquer des pièces très complexes et soumises à des conditions extrêmes (notamment dans les moteurs d'avions ou de fusées).

Notes et références

modifier
  1. (en) « VDM Alloy 600/600H » [PDF], VDM Metals, (consulté le ).
  2. (en) « Inconel Alloy 690 » [PDF], Special Metals, (consulté le ).
  3. (en) « Inconel Alloy 617 » [PDF], Special Metals, (consulté le ).
  4. (en) « VDM Alloy 625 » [PDF], VDM Metals, (consulté le ).
  5. (en) « VDM Alloy 718 » [PDF], VDM Metals, (consulté le ).
  6. (en) « Inconel Alloy X-750 » [PDF], Special Metals, (consulté le ).
  7. S. Hagen, P. Hofmann, G. Schanz et L. Sepold, Interactions in zircaloy/UO2 fuel rod bundles with inconel spacers at temperatures above 1200⁰C. (Posttest results of severe fuel damage experiments CORA-2 and CORA-3), KfK 4378, 1990.

Voir aussi

modifier

Articles connexes

modifier

Liens externes

modifier

Sur les autres projets Wikimedia :