Deep sea

This is an old revision of this page, as edited by 218.186.9.253 (talk) at 05:35, 28 September 2010 (Environmental characteristics). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The deep sea, or deep layer[1], is the lowest layer in the ocean, existing below the thermocline, at a depth of 1000 fathoms (1800 m) or more. Little or no light penetrates this area of the ocean, and most of its organisms rely on falling organic matter produced in the photic zone for subsistence. For this reason scientists assumed life would be sparse in the deep ocean, but virtually every probe has revealed that, on the contrary, life is abundant in the deep ocean.

A hydrothermal vent in the deep sea

From the time of Pliny until the expedition in the ship Challenger between 1872 and 1876 to prove Pliny wrong; its deep-sea dredges and trawls brought up living things from all depths that could be reached. Yet even in the twentieth century scientists continued to imagine that life at great depth was insubstantial, or somehow inconsequential. The eternal dark, the almost inconceivable pressure, and the extreme cold that exist below one thousand meters were, they thought, so forbidding as to have all but extinguished life. The reverse is in fact true....(Below 200 meters) lies the largest habitat on earth.[2]

In 1960 the Bathyscaphe Trieste descended to the bottom of the Mariana Trench near Guam, at 35,798 feet or 6.77 miles (10,911 meters), the deepest spot on earth. If Mount Everest were submerged there, its peak would be more than a mile beneath the surface. At this great depth a small flounder-like fish was seen moving away from the bathyscaphe's spotlight. The Japanese remote operated vehicle (ROV) Kaiko was the only other vessel capable of reaching this depth, but it was lost at sea in 2003. In May and June of 2009, the hybrid-ROV (HROV) Nereus returned to the Challenger Deep for a series of 3 dives to depths exceeding 10900 meters. The Nereus is currently the only vehicle capable of exploring ocean depths beyond 6500 meters.

More is known about the Moon than the deepest parts of the ocean.[2] Until the late 1970s little was known about the possibility of life on the deep ocean floor but the discovery of thriving colonies of shrimp and other organisms around hydrothermal vents changed that. Before the discovery of the undersea vents, all life was thought to be driven by the sun. But these organisms get their nutrients from the earth's mineral deposits directly. These organisms thrive in completely lightless and anaerobic environments, in highly saline water that may reach 300 °F (150 °C), drawing their sustainance from hydrogen sulfide, which is highly toxic to all terrestrial life. The revolutionary discovery that life can exist without oxygen or light significantly increases the chance of there being life elsewhere in the universe. Scientists now speculate that Europa, one of Jupiter's moons, may have conditions that could support life beneath its surface which is speculated to be a liquid ocean beneath the icy crust.

Environmental characteristic

Light

Natural light does not penetrate the deep ocean, with the exception of the upper parts of the mesopelagic. Photosynthesis is not possible, precluding any photosynthetically based primary productivity. Bioluminescence is the only light available at these depths. This lack of light means the organisms have to rely on senses other than vision. It may also have a selective effect on the locomotory habits of the animals and on their propulsive systems.

Pressure

Pressure is the greatest environmental factor acting on deep-sea organisms. Pressure increases 1 atmosphere (atm) for each 10 m in depth. In the deep sea, although most of the deep sea is under pressures between 200 and 600 atm, the range of pressure is from 20 to 1,000 atm. Pressure exhibits a great role in the distribution of deep sea organisms. Until recently, people lacked detailed information on the direct effects of pressure on most deep-sea organisms, because virtually all organisms trawled from the deep sea arrived at the surface dead or dying. With the advent of traps that incorporate a special pressure-maintaining chamber, undamaged larger metazoan animals have been retrieved from the deep sea in good condition. Some of these have been maintained for experimental purposes, and we are obtaining more knowledge of the biological effects of pressure.

Salinity

Salinity is remarkably constant throughout the depths of the deep sea. There are some minor differences in salinity, but none that are ecologically significant, except in the Mediterranean.

Temperature

The two areas of greatest and most rapid temperature change in the oceans are the transition zone between the surface waters and the deep waters, the thermocline, and the transition between the deep-sea floor and the hot water flows at the hydrothermal vents. Thermoclines vary in thickness from a few hundred meters to nearly a thousand meters. Below the thermocline, the water mass of the deep ocean is cold and far more homogeneous. Thermoclines are strongest in the tropics, where the temperature of the epipelagic zone is usually above 20°C. From the base of the epipelagic, the temperature drops over several hundred meters to 5 or 6°C at 1,000 meters. It continues to decrease to the bottom, but the rate is much slower. Below 3,000 to 4,000 m, the water is isothermal.

At any given depth, the temperature is practically unvarying over long periods of time. There are no seasonal temperature changes, nor are there any annual changes. No other habitat on earth has such a constant temperature.

Hydrothermal vents are the direct contrast with constant temperature. In these systems, the temperature of the water as it emerges from the "black smoker" chimneys may be as high as 400°C (it is kept from boiling by the high hydrostatic pressure) while within a few meters it may be back down to 2 - 4°C.[3]

Biology

Regions below the epipelagic are divided into further zones, beginning with the mesopelagic which spans from 200 to 1000 below sea level, where a little light penetrates while still being insufficient for primary production. Below this zone the deep sea proper begins, consisting of the aphotic bathypelagic, abyssopelagic and hadopelagic. Food consists of falling organic matter known as 'marine snow' and carcasses derived from the productive zone above, and is scarce both in terms of spatial and temporal distribution.

Instead of relying on gas for their buoyancy, many species have jelly-like flesh consisting mostly of glycosaminoglycans, which has very low density.[4] It is also common among deep water squid to combine the gelatinous tissue with a flotation chamber filled with a coelomic fluid made up of the metabolic waste product ammonium chloride, which is lighter than the surrounding water.

The midwater fish have special adaptations to cope with these conditions—they are small, usually being under 25 centimetres (10 in); they have slow metabolisms and unspecialized diets, preferring to sit and wait for food rather than waste energy searching for it. They have elongated bodies with weak, watery muscles and skeletal structures. They often have extendable, hinged jaws with recurved teeth. Because of the sparse distribution and lack of light, finding a partner with which to breed is difficult, and many organisms are hermaphroditic.

 
Flashlight fish with bright photophore and eyeshine

Because light is so scarce, fish often have larger than normal, tubular eyes with only rod cells. Their upward field of vision allows them to seek out the silhouette of possible prey. Prey fish however also have adaptations to cope with predation. These adaptations are mainly concerned with reduction of silhouette, a form of camouflage. The two main methods by which this is achieved are reduction in the area of their shadow by lateral compression of the body, and counter illumination via bioluminescence. This is achieved by production of light from ventral photophores, which tend to produce such light intensity to render the underside of the fish of similar appearance to the background light. For more sensitive vision in low light, some fish have a retroreflector behind the retina. Flashlight fish have this plus photophores, which combination they use to detect eyeshine in other fish (see Tapetum lucidum).

It is important to realize that organisms in the deep sea are almost entirely reliant upon sinking living and dead organic matter which falls at approximately 100 meters per day.[5] In addition to this, only about 1-3% of the production from the surface reaches the sea bed mostly in the form of marine snow - as mentioned above. Larger food falls, such as whale carcasses, also occur and studies have shown that these may happen more often than currently believed. There are lots of scavengers that feed primarily or entirely upon large food falls and the distance between whale carcasses is estimated to only be 8 kilometers.[6] In addition, there are a number of filter feeders that feed upon organic particles using tentacles, such as Freyella elegans.[7]

Marine bacteriophages play an important role in cycling nutrients in deep sea sediments. They are extremely abundant (between 5x1012 and 1x1013 phages per square meter) in sediments around the world. [8]

Chemosynthesis

There are a number of species that do not primarily rely upon dissolved organic matter for their food and these are found at hydrothermal vents. One example is the symbiotic relationship between the tube worm Riftia and chemosynthetic bacteria. It is this chemosynthesis that supports the complex communities that can be found around hydrothermal vents.[9] These complex communities are one of the only ecosystems on the planet that do not rely upon sunlight for the creation of energy.[10]

Exploration

The deep sea is an environment totally inhospitable to humankind, and it should come as no surprise that it represents one of the least explored areas on Earth. Pressures even in the mesopelagic become too great for traditional exploration methods, demanding alternative approaches for deep sea research. Baited camera stations, small manned submersibles and ROVs (remotely operated vehicles) are three methods utilized to explore the ocean's depths. Because of the difficulty and cost of exploring this zone, current knowledge is limited. Pressure increases at approximately one atmosphere for every 10 meters meaning that some areas of the deep sea can reach pressures of above 1,000 atmospheres. This not only makes great depths very difficult to reach without mechanical aids, but also provides a significant difficulty when attempting to study any organisms that may live in these areas as their cell chemistry will be adapted to such vast pressures. If any fish or organisms from this depth were brought to the surface to be studied under laboratory conditions, the low atmospheric pressure would cause them to expand or even explode.

See also

Notes

  1. ^ Navy Supplement to the DOD Dictionary of Military and Associated Terms (PDF). Department Of The Navy. 2006. NTRP 1-02. {{cite book}}: Unknown parameter |month= ignored (help)
  2. ^ a b Tim Flannery, Where Wonders Await Us, New York Review of Books, December 2007
  3. ^ Nybakken, James W. Marine Biology: An Ecological Approach. Fifth Edition. Benjamin Cummings, 2001. p. 136 - 141.
  4. ^ http://www.astrobio.net/news/print.php?sid=617
  5. ^ [1]
  6. ^ R. N. Gibson, Harold (CON) Barnes, R. J. A. Atkinson, Oceanography and Marine Biology, An Annual Review. 2007. Volume 41. Published by CRC Press, 2004 ISBN 0-415-25463-9, 9780415254632
  7. ^ http://www.nhm.ac.uk/nature-online/earth/oceans/deep-ocean/session3/index.html
  8. ^ Danovaro, Roberto (2008-08-28). "Major viral impact on the functioning of benthic deep-sea ecosystems". Nature. 454 (7208): 1084–1087. doi:10.1038/nature07268. PMID 18756250. Retrieved 2009-05-03. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ HW Jannasch. 1985. The Chemosynthetic Support of Life and the Microbial Diversity at Deep-Sea Hydrothermal Vents. Proceedings of the Royal Society of London. Series B, Biological Sciences, Vol. 225, No. 1240 (Sep. 23, 1985), pp. 277-297
  10. ^ HW Jannasch. 1985. The Chemosynthetic Support of Life and the Microbial Diversity at Deep-Sea Hydrothermal Vents. Proceedings of the Royal Society of London. Series B, Biological Sciences, Vol. 225, No. 1240 (Sep. 23, 1985), pp. 277-297