Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission
Abstract
:1. Introduction
2. Methods and Limitations of the Reviewed Studies
3. Similarities between SARS-CoV-2 and Other Coronaviruses
4. Effect of Media on SARS-CoV-2 Persistence
5. Effect of Temperature, Relative Humidity, and UV Irradiation on SARS-CoV-2 Persistence
6. Effect of Material-Type on SARS-CoV-2 Persistence
7. Antiviral Surfaces and Future Material Innovation
8. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Islam, N.; Sharp, S.J.; Chowell, G.; Shabnam, S.; Kawachi, I.; Lacey, B.; Massaro, J.M.; Sr, R.B.D.; White, M. Physical Distancing Interventions and Incidence of Coronavirus Disease 2019: Natural Experiment in 149 Countries. BMJ 2020, 370, m2743. [Google Scholar] [CrossRef] [PubMed]
- Boone, S.A.; Gerba, C.P. Significance of Fomites in the Spread of Respiratory and Enteric Viral Disease. Appl. Environ. Microbiol. 2007, 73, 1687–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killingley, B.; Nguyen-Van-Tam, J. Routes of Influenza Transmission. Influ. Other Respir. Viruses 2013, 7, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Yezli, S.; Salkeld, J.A.; French, G.L. Evidence That Contaminated Surfaces Contribute to the Transmission of Hospital Pathogens and an Overview of Strategies to Address Contaminated Surfaces in Hospital Settings. Am. J. Infect. Control. 2013, 41, S6–S11. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, A.; Goldblatt, M. Aerobiology and Its Role in the Transmission of Infectious Diseases. J. Pathog. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.-D.; Wang, Z.-Y.; Zhang, S.-F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.-B.; Dong, Y.-Z.; Chi, X.-Y.; et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg. Infect. Dis. 2020, 26, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA 2020, 323, 1610. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Wang, Y.; Jin, X.; Tian, J.; Liu, J.; Mao, Y. Environmental Contamination by SARS-CoV-2 in a Designated Hospital for Coronavirus Disease 2019. Am. J. Infect. Control. 2020, 48, 910–914. [Google Scholar] [CrossRef]
- Harvey, A.P.; Fuhrmeister, E.R.; Cantrell, M.; Pitol, A.K.; Swarthout, J.M.; Powers, J.E.; Nadimpalli, M.L.; Julian, T.R.; Pickering, A.J. Longitudinal Monitoring of SARS-CoV-2 RNA on High-Touch Surfaces in a Community Setting. medRxiv 2020. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605577/ (accessed on 8 November 2020).
- Atkinson, B.; Petersen, E. SARS-CoV-2 Shedding and Infectivity. Lancet 2020, 395, 1339–1340. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Agrawal, A. Likelihood of Survival of Coronavirus in a Respiratory Droplet Deposited on a Solid Surface. Phys. Fluids 2020, 32, 061704. [Google Scholar] [CrossRef]
- Kewal, K.; Tanuj, K. Aerosol and Surface Persistence: Novel SARS-CoV-2 versus Other Coronaviruses. J. Infect. Dev. Ctries. 2020, 14, 748–749. [Google Scholar]
- Haddaway, N.R.; Collins, A.M.; Coughlin, D.; Kirk, S.A. The Role of Google Scholar in Evidence Reviews and Its Applicability to Grey Literature Searching. PLoS ONE 2015, 10, e0138237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinchuk, P.S.; Fisenko, K.I.; Fisenko, S.P.; Danilova-Tretiak, S.M. Isothermal Evaporation Rate of Deposited Liquid Aerosols and the SARS-CoV-2 Coronavirus Survival. Aerosol Air Qual. Res. 2020, 20. [Google Scholar] [CrossRef]
- Harbourt, D.E.; Haddow, A.D.; Piper, A.E.; Bloomfield, H.; Kearney, B.J.; Fetterer, D.; Gibson, K.; Minogue, T. Modeling the Stability of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on Skin, Currency, and Clothing. PLOS Negl. Trop. Dis. 2020, 14, e0008831. [Google Scholar] [CrossRef] [PubMed]
- Kasloff, S.B.; Strong, J.E.; Funk, D.; Cutts, T.A. Stability of SARS-CoV-2 on Critical Personal Protective Equipment. medRxiv. 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.06.11.20128884v1 (accessed on 3 September 2020).
- Liu, Y.; Li, T.; Deng, Y.; Liu, S.; Zhang, D.; Li, H.; Wang, X.; Jia, L.; Han, J.; Bei, Z.; et al. Stability of SARS-CoV-2 on Environmental Surfaces and in Human Excreta. J. Hosp. Infect. 2020. [Google Scholar] [CrossRef] [PubMed]
- Szpiro, L.; Pizzorno, A.; Durimel, L.; Julien, T.; Traversier, A.; Bouchami, D.; Marie, Y.; Rosa-Calatrava, M.; Terrier, O.; Moules, V. Role of Interfering Substances in the Survival of Coronaviruses on Surfaces and Their Impact on the Efficiency of Hand and Surface Disinfection. medRxiv. 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.08.22.20180042v1 (accessed on 3 September 2020).
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in Different Environmental Conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Kratzel, A.; Steiner, S.; Todt, D.; V’Kovski, P.; Brueggemann, Y.; Steinmann, J.; Steinmann, E.; Thiel, V.; Pfaender, S. Temperature-Dependent Surface Stability of SARS-CoV-2. J. Infect. 2020, 81, 452–482. [Google Scholar] [CrossRef]
- Pastorino, B.; Touret, F.; Gilles, M.; De Lamballerie, X.; Charrel, R. Prolonged Infectivity of SARS-CoV-2 in Fomites. Emerg. Infect. Dis. 2020, 26, 2256–2257. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Matson, M.J.; Yinda, C.K.; Seifert, S.N.; Bushmaker, T.; Fischer, R.J.; Lloyd-Smith, J.O.; Munster, V.J. Effect of Environmental Conditions on SARS-CoV-2 Stability in Human Nasal Mucus and Sputum. Emerg. Infect. Dis. 2020, 26, 2276. [Google Scholar]
- OCLC. Available online: https://www.oclc.org/realm/happening-now/20200622-round-1-test-results-now-available.html (accessed on 3 September 2020).
- OCLC. Available online: https://www.oclc.org/realm/happening-now/20200720-test2-results-available.html (accessed on 3 September 2020).
- OCLC. Available online: https://www.oclc.org/realm/happening-now/20200818-test-3-results-available.html (accessed on 3 September 2020).
- Eccles, R. Respiratory Mucus and Persistence of Virus on Surfaces. J. Hosp. Infect. 2020, 105, 350. [Google Scholar] [CrossRef] [PubMed]
- Goldman, E. Exaggerated Risk of Transmission of COVID-19 by Fomites. Lancet Infect. Dis. 2020, 20, 892–893. [Google Scholar] [CrossRef]
- Ansari, S.A.; Springthorpe, V.S.; Sattar, S.A.; Rivard, S.; Rahman, M. Potential Role of Hands in the Spread of Respiratory Viral Infections: Studies with Human Parainfluenza Virus 3 and Rhinovirus 14. J. Clin. Microbiol. 1991, 29, 2115–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bean, B.; Moore, B.M.; Sterner, B.; Peterson, L.R.; Gerding, D.N.; Balfour, H.H. Survival of Influenza Viruses on Environmental Surfaces. J. Infect. Dis. 1982, 146, 47–51. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Cinatl, J.; Morgenstern, B.; Bauer, G.; Preiser, W.; Doerr, H.W. Stability and inactivation of SARS Coronavirus. Med. Microbiol. Immunol. 2005, 194, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact Killing and Antimicrobial Properties of Copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [Green Version]
- Warnes, S.L.; Little, Z.R.; Keevil, C.W. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. mBio 2015, 6, e01697-15. [Google Scholar] [CrossRef] [Green Version]
- Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Reese, A.L.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; et al. Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces. mSphere 2020, 5, 00441-20. [Google Scholar] [CrossRef]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.H.; Peiris, J.S.M.; Lam, S.Y.; Poon, L.L.M.; Yuen, K.Y.; Seto, W.H. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv. Virol. 2011, 2011, 1–7. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Munster, V.J. Stability of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) under Different Environmental Conditions. Eurosurveillance 2013, 18, 20590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanin, M.; Baviskar, P.; Webster, R.; Webby, R. The Interaction between Respiratory Pathogens and Mucus. Cell Host Microbe 2016, 19, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, D.V.; Cohen, B.; Bovino, M.E.; Desai, S.; Whittier, S.; Larson, E.L. Survival of Influenza Virus on Hands and Fomites in Community and Laboratory Settings. Am. J. Infect. Control. 2012, 40, 590–594. [Google Scholar] [CrossRef]
- Thomas, Y.; Vogel, G.; Wunderli, W.; Suter, P.; Witschi, M.; Koch, D.; Tapparel, C.; Kaiser, L. Survival of Influenza Virus on Banknotes. Appl. Environ. Microbiol. 2008, 74, 3002–3007. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.Y.Y.; Cheng, P.K.C.; Lim, W.W.L. Survival of Severe Acute Respiratory Syndrome Coronavirus. Clin. Infect. Dis. 2005, 41, e67–e71. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral Load of SARS-CoV-2 in Clinical Samples. Lancet Infect. Dis. 2020, 20, 411–412. [Google Scholar] [CrossRef]
- Sia, S.F.; Yan, L.-M.; Chin, A.W.H.; Fung, K.; Choy, K.-T.; Wong, A.Y.L.; Kaewpreedee, P.; Perera, R.A.P.M.; Poon, L.L.M.; Nicholls, J.M.; et al. Pathogenesis and Transmission of SARS-CoV-2 in Golden Hamsters. Nature 2020, 583, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Buckland, F.E.; Tyrrell, D.A.J. Loss of Infectivity on Drying Various Viruses. Nature 1962, 195, 1063–1064. [Google Scholar] [CrossRef] [PubMed]
- Heilingloh, C.S.; Aufderhorst, U.W.; Schipper, L.; Dittmer, U.; Witzke, O.; Yang, D.; Zheng, X.; Sutter, K.; Trilling, M.; Alt, M.; et al. Susceptibility of SARS-CoV-2 to UV Irradiation. Am. J. Infect. Control 2020, 48, 1273–1275. [Google Scholar] [CrossRef]
- Ratnesar-Shumate, S.; Williams, G.; Green, B.; Krause, M.; Holland, B.; Wood, S.; Bohannon, J.; Boydston, J.; Freeburger, D.; Hooper, I.; et al. Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J. Infect. Dis. 2020, 222, 214–222. [Google Scholar] [CrossRef]
- Duan, S.-M.; Zhao, X.-S.; Wen, R.-F.; Huang, J.-J.; Pi, G.-H.; Zhang, S.-X.; Han, J.; Bi, S.-L.; Ruan, L.; Dong, X.-P. Stability of SARS Coronavirus in Human Specimens and Environment and Its Sensitivity to Heating and UV Irradiation. Biomed. Environ. Sci. 2003, 16, 246–255. [Google Scholar] [PubMed]
- Tseng, C.-C.; Li, C.-S. Inactivation of Viruses on Surfaces by Ultraviolet Germicidal Irradiation. J. Occup. Environ. Hyg. 2007, 4, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Behzadinasab, S.; Chin, A.W.; Hosseini, M.; Poon, L.L.M.; Ducker, W.A. A Surface Coating that Rapidly Inactivates SARS-CoV-2. ACS Appl. Mater. Interfaces 2020, 12, 34723–34727. [Google Scholar] [CrossRef] [PubMed]
- Bonny, T.S.; Yezli, S.; Lednicky, J.A. Isolation and Identification of Human Coronavirus 229E From Frequently Touched Environmental Surfaces of a University Classroom That Is Cleaned Daily. Am. J. Infect. Control 2018, 46, 105–107. [Google Scholar] [CrossRef] [Green Version]
- Casanova, L.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Coronavirus Survival on Healthcare Personal Protective Equipment. Infect. Control Hosp. Epidemiol. 2010, 31, 560–561. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Tillmann, R.; Simon, A.; Schildgen, O. Stability of Human Metapneumovirus and Human Coronavirus NL63 on Medical Instruments and in the Patient Environment. J. Hosp. Infect. 2008, 69, 406–408. [Google Scholar] [CrossRef] [Green Version]
- Sizun, J.; Yu, M.; Talbot, P. Survival of Human Coronaviruses 229E and OC43 in Suspension and After Drying Onsurfaces: A Possible Source of Hospital-Acquired Infections. J. Hosp. Infect. 2000, 46, 55–60. [Google Scholar] [CrossRef]
- LeClaire, P.; Umnova, O.V.; Horoshenkov, K.V.; Maillet, L. Porosity Measurement by Comparison of Air Volumes. Rev. Sci. Instrum. 2003, 74, 1366. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.W.M.; Cutts, T.A.; Nikiforuk, A.M.; Poliquin, P.G.; Court, D.A.; Strong, J.E.; Theriault, S.S. Evaluating Environmental Persistence and Disinfection of the Ebola Virus Makona Variant. Viruses 2015, 7, 1975–1986. [Google Scholar] [CrossRef]
- Tiwari, A.; Patnayak, D.P.; Chander, Y.; Parsad, M.; Goyal, S.M. Survival of Two Avian Respiratory Viruses on Porous and Nonporous Surfaces. Avian Dis. 2006, 50, 284–287. [Google Scholar] [CrossRef]
- Lopez, G.U.; Gerba, C.P.; Tamimi, A.H.; Kitajima, M.; Maxwell, S.L.; Rose, J.B. Transfer Efficiency of Bacteria and Viruses from Porous and Nonporous Fomites to Fingers under Different Relative Humidity Conditions. Appl. Environ. Microbiol. 2013, 79, 5728–5734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, L.M. Surface Engineering of Personal Protective Equipments (PPEs) to Prevent the Contagious Infections of SARS-CoV-2. Surf. Eng. 2020, 36, 901–907. [Google Scholar] [CrossRef]
- Armanious, A.; Aeppli, M.; Jacak, R.; Refardt, D.; Sigstam, T.; Kohn, T.; Sander, M. Viruses at Solid–Water Interfaces: A Systematic Assessment of Interactions Driving Adsorption. Environ. Sci. Technol. 2016, 50, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Gundy, P.M.; Gerba, C.P.; Pepper, I.L. Survival of Coronaviruses in Water and Wastewater. Food Environ. Virol. 2009, 1, 10. [Google Scholar]
- Yamamoto, T.; Iwase, H.; King, T.W.; Hara, H.; Cooper, D.K. Skin Xenotransplantation: Historical Review and Clinical Potential. Burns 2018, 44, 1738–1749. [Google Scholar] [CrossRef]
- Abad, F.X.; Villena, C.; Guix, S.; Caballero, S.; Pintó, R.M.; Bosch, A. Potential Role of Fomites in the Vehicular Transmission of Human Astroviruses. Appl. Environ. Microbiol. 2001, 67, 3904–3907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurman, R.B.; Gerba, C.P. Characterization of the Effect of Aluminum Metal on Poliovirus. J. Ind. Microbiol. Biotechnol. 1988, 3, 33–38. [Google Scholar] [CrossRef]
- Jo, S.; Kim, S.; Kim, D.Y.; Kim, M.-S.; Shin, D.H. Flavonoids with Inhibitory Activity Against SARS-CoV-2 3CLpro. J. Enzym. Inhib. Med. Chem. 2020, 35, 1539–1544. [Google Scholar] [CrossRef]
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral Natural Products and Herbal Medicines. J. Tradit. Complement. Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Sportelli, M.C.; Izzi, M.; Kukushkina, E.A.; Hossain, S.I.; Picca, R.A.; Cioffi, N.; Cioffi, N. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? Nanomaterials 2020, 10, 802. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, Z. Bioinspired Surfaces with Wettability for Antifouling Application. Nanoscale 2019, 11, 22636–22663. [Google Scholar] [CrossRef] [PubMed]
Ref. | Virus | Substrate | Time | Half- Life (Hours) | Titre (log) | Temp. (°C) | RH (%) | Media | Vol. (µL) | Type |
---|---|---|---|---|---|---|---|---|---|---|
[23] | SARS-CoV-2 | Polystyrene | ~36 h | 3.3 | 5–0.5 | 4 | 40 | Nasal Mucus | 50 | USA-WA1/2020 |
~24 h | 3.1 | 21 | ||||||||
~12 h | 1.5 | 27 | 85 | |||||||
~48 h | 5.8 | 4 | 40 | Sputum | ||||||
~24 h | 3.1 | 21 | ||||||||
~12 h | 1.5 | 27 | 85 | |||||||
[18] | SARS-CoV-2 | Stainless Steel | 72–96 h | n/a | 6.2–0.8 | 7 | 65 | Culture Media | 50 | BetaCoV/France/IDF0571/2020) |
48–72 h | 25 | |||||||||
7 | Artificial Saliva/ Mucus | |||||||||
30–48 h | 25 | |||||||||
HCoV-229E | >96 h | 7.1–0.8 | 7 | Culture Media | ATCC-VR-740 | |||||
25 | ||||||||||
7 | Artificial Saliva/ Mucus | |||||||||
30–48 h | 25 | |||||||||
FCoV | >96 h | 6.8–0.6 | 7 | Culture Media | RVB-1259 | |||||
72–96 h | 25 | |||||||||
>96 h | 7 | Artificial Saliva/Mucus | ||||||||
24–30 h | 25 | |||||||||
[26] | SARS-CoV-2 | USB Cassette Talking Book (Acrylonitrile Butadiene Styrene, Specific Blend), Rigid Plastic Storage Container (high-density Polyethylene), Plexiglas (Acrylic) | >5 d | n/a | 4.7–1.1 | 22 | 30–50 | Culture Medium | 100 | USA-WA1/2020 |
DVD (Polycarbonate), Flexible Plastic Storage Bag (Low-Density Polyethylene) | 4–5 d | |||||||||
[25] | SARS-CoV-2 | Braille Paper Pages, Glossy Book Pages, Children’s Board Book (all Stacked) | 3–4 d | n/a | 5.26–1.1 | 22 | 30–50 | Culture Medium | 100 | USA-WA1/2020 |
Magazine Pages (Stacked) | >4 d | |||||||||
Archival Folders (Stacked) (Materials were Stacked after Inoculation to Mimic Storage Conditions in Libraries) | 1–2 d | |||||||||
[49] | SARS-CoV-2 | Cu2O/Polyurethane (PU) Coating on Glass | 0–1 h | n/a | 7.8–2 | 22–23 | 60–70 | Culture Medium | 5 | n/a |
Cu2O/PU on Stainless Steel | 1–3 h | |||||||||
PU Coating on Glass, Polymeric Cation Coating on Glass, Bare Stainless Steel, Bare Glass | >24 h | |||||||||
[15] | SARS-CoV-2 | Swine Skin | >336 h | 46.8 | * 4.5–0.1 | 4 | 40–50 | Culture Medium | 50 | USA-WA1/2020 |
96–168 h | 3.5 | 22 | ||||||||
8–24 h | 0.6 | 37 | ||||||||
USD 1 Bank Note (25% Linen and 75% Cotton) | 168–336 h | 33.2 | 4 | |||||||
8–24 h | 1.3 | 22 | ||||||||
4–8 h | 0.4 | 37 | ||||||||
USD 20 Bank Note (25% Linen and 75% Cotton) | 168–336 h | 15.9 | 4 | |||||||
24–72 h | 1.1 | 22 | ||||||||
8–24 h | 0.6 | 37 | ||||||||
Clothing (35% Cotton and 65% Polyester) | 96–168 h | 33.7 | 4 | |||||||
4–8 h | 1.0 | 22 | ||||||||
0.2 | 37 | |||||||||
[24] | SARS-CoV-2 | Hardback Book Cover, Paperback Book Cover, DVD Case | 1 h–1 d | n/a | 5.5–1.1 | 22 | 30–50 | Culture Medium | 100 | USA-WA1/2020 |
Plain Paper, Plastic Protective Cover | 1–3 d | |||||||||
[20] | SARS-CoV-2 | Metal | 192–214 h | 12. 9 | 7.3–2 | 4 | 30–40 | Culture Medium w/0.3% BSA | n/a | Munchen-1.1/2020/929 |
120–144 h | 9.1 | RT | ||||||||
>214 h | 17.9 | 30 | ||||||||
[34] | SARS-CoV-2 | Stainless Steel, Acrylonitrile Butadiene Styrene Plastic, Nitrile Rubber Gloves | >48 h | 15.33 | 2–0.2 | 24 | 20 | Simulated Saliva | 1–50 | USA-WA1/2020 |
24–48 h | 11.52 | 40 | ||||||||
9.15 | 60 | |||||||||
n/a | 8.33 | 80 | ||||||||
6.11 | 28 | 40 | ||||||||
24–48 h | 7.33 | 35 | 20 | |||||||
9–24 h | 7.52 | 40 | ||||||||
3–9 h | 2.26 | 60 | ||||||||
[16] | SARS-CoV-2 | Nitrile Medical Examination Gloves | 7–14 d | n/a | 7.88–0.5 | 20 | 35–40 | Tripartite Soil Load w/Mucin, BSA, and Tryptone | 10 | hCoV-19/Canada/ON-VIDO-01 |
Reinforced Chemical Resistant Gloves | 4–7 d | |||||||||
N-95 Mask | >21 d | |||||||||
N-100 Mask, Tyvek ® Coveralls, Plastic from Face Shields, Stainless Steel | 14–21 d | |||||||||
Heavy Cotton | 4 h–1 d | |||||||||
[17] | SARS-CoV-2 | Plastic | >7 d | 0.57, 16.38 | 6–1.5 | 25–27 | 35 | Culture Medium | 50 | BetaCoV/Beijing/AMMS01/2020 |
Stainless Steel | 0.83, 22.88 | |||||||||
Glass | 0.84, 22.30 | |||||||||
Surgical Mask | 0.64, 19.07 | |||||||||
Ceramics | 0.51, 21.71 | |||||||||
Latex Gloves | 0.54, 10.28 | |||||||||
wood | 0.20, 21.41 | |||||||||
Cotton clothes | 4–5 d | 0.17, 22.72 | ||||||||
Paper | 5–7 d | 4.75 | ||||||||
[14] | SARS-CoV-2 | Polypropylene | ~50 h | n/a | 3.5–n/a | 21–23 | 40 | Culture medium | 50 | n/a |
Stainless steel | ~30 | |||||||||
Cardboard | ~24 h | |||||||||
Copper | ~5 h | |||||||||
[21] | SARS-CoV-2 | Polypropylene | >96 h | >96 | 6–0.5 | 19–21 | 45–55 | Culture Medium w/1.8 g/L FBS | 50 | n/a |
FBS Culture Medium + 10 g/L BSA | ||||||||||
Glass | 24–48 h | 17 | Culture Medium w/1.8 g/L FBS | |||||||
>96 h | >96 | FBS Culture Medium + 10 g/L BSA | ||||||||
Aluminum | 2–4 h | 2.5 | Culture Medium w/1.8 g/L FBS | |||||||
>96 h | >96 | FBS Culture Medium + 10 g/L BSA | ||||||||
[19] | SARS-CoV-2 | Outer Surgical Mask | >7 d | 1.4, 23.9 | 7.8–2 | 22 | 65 | Culture Medium | 5 | n/a |
Inner Surgical Mask | 4–7 d | 1.0, 9.9 | ||||||||
Plastic | 1.6, 11.4 | |||||||||
Stainless Steel | 0.3, 14.7 | |||||||||
Glass | 2–4 d | 1.2, 4.8 | ||||||||
Banknote | 0.9, 7.9 | |||||||||
Wood, Cloth | 1–2 d | n/a | ||||||||
Printing/ Tissue Paper | 1–3 h | |||||||||
[22] | SARS-CoV-2 | Plastic | 72–96 h | 6.81 | 3.5–0.6 | 21–-23 | 65 | Culture Medium | 50 | nCoV-WA1-2020 |
Stainless Steel | 48–72 h | 5.63 | ||||||||
Cardboard | 24–48 h | 3.46 | ||||||||
Copper | 4–8 h | 0.77 | 3.5–1.5 | |||||||
SARS-CoV-1 | Plastic | 72–96 h | 7.55 | 3.5–0.6 | Tor 2 | |||||
Stainless Steel | 48–72 h | 4.16 | ||||||||
Cardboard | 8–24 h | 0.59 | ||||||||
Copper | 1.5 | 3.5–1.5 | ||||||||
[50] | HCoV-229E | Plastic, Glass, Stainless Steel | >7 d | n/a | *6–3.5 | 24 | 50 | Culture Medium | 20 | VR-740 |
[33] | HCoV-229E | Stainless Steel, Teflon (Polytetrafluoroethylene), Polyvinyl Chloride, Ceramic, Glass, Silicone Rubber | ≥5 d | n/a | * 4.5–1.5 | 21 | 30–40 | Lung Cell Lysate | 20 | n/a |
Brass (90% Copper) | <30 min | |||||||||
Brass (70% Copper) | ≤45 min | |||||||||
Copper Nickel (90% Copper) | <30 min | |||||||||
Copper Nickel (70% Copper) | ≤125 min | |||||||||
[37] | MERS-CoV | Stainless Steel, Plastic | 48–72 h | 0.44–0.97 | 6–n/a | 20 | 40 | Culture Medium | 100 | HCoV-EMC/2012 |
24–48 h | 30 | 30 | ||||||||
8–24 h | 30 | 80 | ||||||||
[36] | SARS-CoV-1 | Plastic | ~28 d | n/a | 7–2 | 22–25 | 40–50 | Culture Medium | 10 | HKU39849 |
28 | 80–> 95 | |||||||||
33 | ||||||||||
~24 h | 7–5 | 38 | 80–89 | |||||||
7–3.5 | 38 | >95 | ||||||||
[35] | TGEV | Stainless Steel | >28 d | n/a | ** 6.5–0.5 | 4 | 20 | Culture Medium | 10 | n/a |
50 | ||||||||||
80 | ||||||||||
20 | 20 | |||||||||
>3 d | 50 | |||||||||
>14 d | 80 | |||||||||
96–120 h | 40 | 20 | ||||||||
6–12 h | 50 | |||||||||
4–6 h | 80 | |||||||||
MHV | >28 d | 4 | 20 | |||||||
50 | ||||||||||
80 | ||||||||||
20 | 20 | |||||||||
4–5 d | 50 | |||||||||
10–11 d | 80 | |||||||||
>120 h | 40 | 20 | ||||||||
>24 h | 50 | |||||||||
4–6 h | 80 | |||||||||
[51] | TGEV | N95 Respirator, Contact Isolation Gowns | >24 h | n/a | ** >3–n/a | 20 | 50 | Culture Medium | 10 | n/a |
Latex Gloves, Nitrile Gloves, Hospital Scrub | 4–24 h | |||||||||
[52] | HCoV-NL63 | Latex Gloves, Thermometer Caps, Stethoscopes, Plastic Tables | <1 h | n/a | n/a | n/a | n/a | Culture Medium | n/a | n/a |
[31] | SARS-CoV-1 | Polystyrene | 6–9 d | n/a | 6.5–1.5 | 21–25 | n/a | Culture Medium | 500 | FMM-1 |
Culture Medium + 10% FCS | ||||||||||
HCoV-229E | 48–72 h | Culture Medium | n/a | |||||||
24–48 h | Culture Medium + 10% FCS | |||||||||
[41] | SARS-CoV-1 | Polyethylene Coated Gown | >2 d | n/a | 6–n/a | 20 | n/a | Culture Medium Diluted in PBS | 5 | GVU6109 |
1–2 d | 5–n/a | |||||||||
1–2 h | 4–n/a | |||||||||
Paper | 1–2 d | 6–n/a | ||||||||
3–6 h | 5–n/a | |||||||||
<5 m | 4–n/a | |||||||||
Cotton Gown | 1–2 d | 6–n/a | ||||||||
1–2 h | 5–n/a | |||||||||
5 min–1 h | 4–n/a | |||||||||
[47] | SARS-CoV-1 | Metal, Cloth, Filter Paper | >120 h | n/a | 6.5–n/a | 20 | n/a | Culture Medium | 300 | P9 |
Plastic, Glass, Press Paper, Wood | 96–120 h | |||||||||
Mosaic | 72–96 h | |||||||||
[53] | HCoV-229E | Aluminum, Cotton Gauze, Latex Gloves | 6–12 h | n/a | 5.5–n/a | 21 | 55–70 | Culture Medium | 10 | n/a |
HCoV-OC43 | 2–3 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueckert, M.; Gupta, R.; Gupta, A.; Garg, M.; Mazumder, A. Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission. Materials 2020, 13, 5211. https://doi.org/10.3390/ma13225211
Bueckert M, Gupta R, Gupta A, Garg M, Mazumder A. Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission. Materials. 2020; 13(22):5211. https://doi.org/10.3390/ma13225211
Chicago/Turabian StyleBueckert, Max, Rishi Gupta, Aditi Gupta, Mohit Garg, and Asit Mazumder. 2020. "Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission" Materials 13, no. 22: 5211. https://doi.org/10.3390/ma13225211
APA StyleBueckert, M., Gupta, R., Gupta, A., Garg, M., & Mazumder, A. (2020). Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission. Materials, 13(22), 5211. https://doi.org/10.3390/ma13225211